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Abstract

Purpose: The data generating mechanisms underlying health care data are infrequently
considered, leading to inequitable equilibria being reinforced throughout the care continuum.
As race-based criteria are reassessed, the effect of those criteria on patterns of disease progres-
sion should also be reevaluated. We proposed a novel microsimulation-based framework for
attenuating societal bias in primary care registry data to study this.

Methods: Our data transformation framework allows us to generate counterfactual outcome
distributions that would have been observed in the absence of race-based diagnosis and treatment
criteria. We developed a continuous-time microsimulation model of kidney function decline,
measured by estimated glomerular filtration rate (eGFR). The model simulates individual
eGFR trajectories over time. eGFR decline is accelerated by hypertension, diabetes, and
reaching chronic kidney disease stage 3a, and can be delayed by interventions, which are applied
based on eGFR level, measured with or without an adjustment for Black race. A Bayesian
calibration procedure was applied to identify rates of eGFR decline corresponding to stage
distributions in the cohort.

Results: Under the counterfactual scenario without a race adjustment, Black individuals qualify
for diagnosis earlier, and non-Black individuals later, than under the reference scenario with
race adjustment. The difference was largest for earlier stages and smaller at each consecutive
stage. We do not observe differences in life expectancy between the two scenarios.

Limitations: Large variability in the prevalence of treatment and heterogeneity in treatment
effectiveness may impact our results.

Conclusions: Our data transformation framework demonstrates how the explicit representation
of the data generation process could inform the effect of policy changes on clinical data
distributions. The framework can flexibly be adapted to mitigate bias in other health data.
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Highlights

• We developed a novel data transformation framework for attenuating societal biases in
data using microsimulation models in a study of chronic kidney disease progression with
primary care data.

• The removal of race-based criteria changed the timing of qualification for chronic kidney
disease diagnosis, with opposite effects for Black and non-Black patients.

• However, our simulation analyses did not identify a difference in life expectancy after the
removal of the race adjustment.

• The explicit representation of the data generation process can help anticipate the effect
that policy changes can have on clinical data distributions.

1 Introduction

Primary care plays a central role in the management of chronic disease, and has the potential
to address factors early in disease progression that have downstream health effects. However,
there are substantial disparities in the health system that contribute to persistently worse
health outcomes for minoritized groups.2 New, large primary care datasets may better inform
interventions that ameliorate health inequities as well as statistical tools that encourage earlier
diagnosis and treatment for patients who have experienced delayed care. However, these data
reflect the existing inequitable equilibrium of the healthcare system, as they are encoded
with societal biases, including racism, race-based treatment criteria, access disparities, and
unmeasured differential exposure to social factors. There is risk that using these data as they
are to build statistical tools will perpetuate biases further.3 Additionally, healthcare data rarely
incorporate information on social drivers of health, social mechanisms and structures beyond
the healthcare system that impact health, and are among the most important contributors to
health inequities.4

Approaches for transforming data to mitigate societal bias, referred to elsewhere as data
de-biasing, have previously been proposed in the algorithmic fairness literature.5–7 These
approaches assume that the data encode a form of societal bias, which arises from a socially
biased data generation process, measurement error, or unmeasured confounders. They include
re-labeling, resampling or reweighing data, or generating intermediate data representations
where some of the information and correlation structure is removed. These methods typically
try to change data as if the process generating data was different, but do not usually formally
define the change or explicitly model it. They also do not typically incorporate social drivers
of health, which contribute to the data generation process.8

In this work, we develop a new framework for data transformations that explicitly encodes
changes to the biased data generating process to reflect a desired equilibrium. Our proposed
method is a novel pre-processing algorithmic fairness approach that utilizes microsimulations
to define the data generating process mechanistically and generate new values that would have
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been generated under clearly defined changes to the data generating process. The simulated
data can then be used to inform future interventions and policy decisions. To our knowledge,
this is the first microsimulation-based data transformation approach.

We study chronic kidney disease (CKD), a heterogenous, progressive condition affecting 1 in 7
Americans.9 Early diagnosis and treatment are crucial for maintaining health and preventing
irreversible damage. The condition is classified into six stages corresponding to an increasing
degree of kidney damage. Stages 1 and 2 are often asymptomatic and diagnosis requires urine
tests for albuminuria, while the remaining stages (3a, 3b, 4, and 5) can be identified using
only the estimated glomerular filtration rate (eGFR), which corresponds to the percentage of
remaining kidney function.10 Appropriate management of CKD differs depending on disease
etiology, comorbidities, and progression speed.11 In Stage 5, also referred to as end-stage renal
disease (ESRD), the only treatment options are dialysis or kidney transplant. Timely primary
and specialist care have been associated with reductions in yearly rate of eGFR decline and
reduced mortality.12–19 In the U.S., CKD is more prevalent among racial and ethnic minorities
than in white patients.20 Black patients have higher rates of ESRD and faster progression
through CKD stages compared to white patients, despite similar rates of CKD diagnosis between
the two groups.21 A range of social and structural factors contributes to those inequities,22–24

including adverse environmental exposures and neighborhood conditions, as well as suboptimal
care patterns.25,26

Race-adjusted formulas for estimating eGFR have been used for diagnosis and treatment
decisions over decades.27–33 This race adjustment for Black patients has faced significant criticism
for lack of clear biological justification and perpetuating racial bias.35 The implementation
of race adjustment in the eGFR formula likely contributed to delayed CKD diagnosis and
treatment for Black patients as well as faster disease progression and higher mortality since it
overestimated their eGFR, assigning them to less severe CKD categories.21,31,35–38 In 2021, a
new eGFR equation without race adjustment was proposed, with uptake by the majority of
U.S. labs by 2023.36,39,40 It has been hypothesized that using the 2021 formula may reduce
delays in the treatment of Black patients by encouraging earlier initiation of stage-specific
treatment and care.36

We use our data transformation framework to simulate CKD trajectories. These trajectories
correspond to primary care data that may have been observed under a more equitable data
generation process if the current eGFR criteria (without race adjustment) had been in effect
since 2017. We will explicitly account for the change in timing of diagnosis and stage assignment,
as well as changes in CKD progression and mortality resulting from changes in stage-specific
interventions that come from updating a 2009 formula to the 2021 formula. Additionally, we
explicitly model social drivers of health in the data generating process.
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2 Methods

2.1 Data

2.1.1 American Family Cohort

Our primary data source is the American Family Cohort (AFC), which is a research version
of a Center for Medicare and Medicaid Services certified clinical registry and the largest
primary care registry in the United States.41 AFC includes clinical, social, and demographic
information for over 7 million individuals and 1300 practices, representing all 50 states. The
dataset has a high representation of underserved (e.g., racial and ethnic minority, rural, and
low-income) populations, and includes individuals insured through Medicare and Medicaid
as well as privately. We used these primary care registry data to characterize stages of CKD
progression, including among undiagnosed patients.

2.1.2 Cohort definition

We defined a cohort of adult patients (i.e., age 18 years or older) for whom CKD progression
can be observed in the AFC dataset between January 1, 2017 and December 31, 2017. Using
standard codes,42 we extracted variables corresponding to age, binary recorded sex, serum
creatinine measurements, diagnoses of CKD, diabetes, hypertension, and acute events known to
impact creatinine levels (e.g. acute kidney injury, volume depletion, critical illness). Exclusion
criteria were applied to remove those observed for less than a year after the inclusion date and
those missing binary sex information. Extreme creatinine measurements above 73.8 and below
0 likely corresponded to other tests and were removed.43 Creatinine measurements captured
within 30 days of acute events were also excluded, as they may not have been indicative of overall
kidney health.42 We used the first available creatinine measurement to calculate eGFR values
and subsequently classified individuals into CKD stages (eGFR ≥ 90: stage 1, 60-89: stage 2,
45-59: stage 3a, 30-44: stage 3b, 15-29: stage 4, ≤ 15: stage 5).10 Given the underutilization
of urine tests necessary for establishing albuminuria status, our analysis depends solely on
eGFR-defined staging. eGFR values below 5 were removed as they were unlikely to have been
captured in a clinic. Additionally, we extracted census tracts corresponding to patient home
addresses as well as recorded race and ethnicity.

2.1.3 Social drivers of health

In addition to the AFC dataset, we considered two census tract-level indices of social deprivation
and vulnerability: the Index of Concentration at the Extremes (ICE) and the Social Deprivation
Index (SDI).44,45 These indices were generated using the 2020 American Community Survey
data46 and assigned to individual patients based on census tracts. Individuals missing census
tract information were excluded from the calculation of ICE and SDI calibration targets.
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The indices were selected to capture relationships between social factors known to impact
the progression of CKD, based on prior literature.8,22–24,47 The ICE is a metric expressing
concentrated extremes of both privilege and deprivation. Three types of ICE are available:
income inequality, racial composition, or combined income and race. We used the latter, which
jointly measures economic and racial segregation. For a given geographic area and population,
it compares the fraction of non-Hispanic whites who are above the 80th percentile of income
nationally with the fraction of non-white minorities whose income is below the 20th percentile.
The SDI was developed to identify areas with unmet health care access needs for additional
resource allocation. It is based on data regarding education, employment, family composition,
housing quality, income, and transportation. We mapped the values of both indices into three
quantiles based on their distribution in the AFC dataset.

2.2 Model

There are two primary simulation modeling approaches for CKD.48,49 The first creates discrete-
time transitions through CKD disease states, defined by transition probabilities or risk
equations50,51. The second considers continuous, linear eGFR decline, with decline rates
typically sampled from predefined distributions.52,53 Both approaches allow for modeling
changes in progression associated with time-dependent changes to diagnosed comorbidities,
CKD diagnosis status, and interventions, such as particular treatments. However, because
CKD disease states are defined by eGFR values in clinical practice, directly modeling eGFR
decline is, in principle, clinically better motivated than discrete stage modeling.

We developed a continuous-time microsimulation model of eGFR decline based on the AFC
cohort, past studies, and data on social drivers. Model parameters were calibrated to reflect
the CKD stage distributions in the AFC cohort conditional on sex, diabetes, hypertension,
ICE quantiles, or SDI quantiles. This process is represented by the conceptual flowchart in
Figure 1. The model simulates individual eGFR trajectories over time, from initiation age of
30 until death. eGFR decline is accelerated by hypertension, diabetes and reaching CKD stage
3a. It can be delayed by interventions, which are applied according to a patient’s eGFR level,
as measured by a particular eGFR formula.

The model was then used to simulate two scenarios: 1) reference, which corresponds to the
setting under which the AFC data was collected when the race-adjusted eGFR formula would
have been used, and 2) counterfactual, which reflects changes in time of treatment initiation
following the switch to the 2021 CKD-EPI Creatinine-based eGFR equation (eGFR21) without
race adjustment. While under the reference scenario, clinicians may have used one of several
race-adjusted eGFR formulas. We assumed uniform use of the 2009 CKD-EPI Creatinine
equation (eGFR09) for simplicity.31 All simulated individuals faced mortality risk specific to
their age, sex, diabetes status, and eGFR level. The eGFR in the model corresponds to eGFR21,
following current recommendations,36,54 and allows for ease of interpretation of model outputs
by practitioners. Additional details about parameter sources and modeling assumptions are
included in the Parameters Supplement.
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Figure 1: Conceptual flowchart representing the microsimulation model construction and the
process of data simulation.

Trajectory simulation occurs in six steps, as shown in Figure 2. Rates of eGFR decline
were developed to be conditional on individual-level covariates: progression to moderate or
advanced CKD (stage 3a or above), incidence of diabetes and hypertension (see Table S3), and
treatment status. Prior mean values of the decline rates were derived from previous analyses
using NHANES data,52,53,55 and assumed the absence of albuminuria. Ages of diabetes of
hypertension incidence came from piecewise exponential frailty models, based on national
incidence statistics grouped by age.56,57 Onset of hypertension additionally depended on sex.
It was assumed that the timing of onset for both conditions was independent of one another.

We considered two interventions following a CKD diagnosis: enhanced comorbidity management
and nephrology management. The model assumed that interventions can only be assigned
starting at CKD stage 3a, with assignment probabilities increasing in more advanced stages,
and that each individual assigned an intervention experienced the same reduction in the eGFR
progression rate (Table S4). Interventions were applied the moment a patient’s eGFR crossed
into a new stage and immediately resulted in reducing the speed of eGFR decline. Time
of death was sampled from a piece-wise exponential survival model obtained from age- and
sex-specific life tables in 2019.58 These values were additionally adjusted with eGFR- and
diabetes-specific hazard ratios.59 Our procedure relied on a nonparametric sampling method.60

Further details of the model are included in the Model Supplement.
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Figure 2: eGFR trajectory construction flowchart

2.3 Calibration

Rates of eGFR decline conditional on diabetes, hypertension, and CKD stage could not be
directly estimated from the data. To obtain them, we instead used a Bayesian calibration
procedure using calibration targets derived from the AFC dataset, as illustrated in Figure 3.
The targets reflect age-specific distributions of CKD stages by sex, diabetes, hypertension
status, ICE quantiles, and SDI quantiles (Parameters Supplement).

For all calibrated parameters, we defined truncated univariate normal prior distributions to
exclude eGFR slopes indicating improvement over time, based on existing evidence, theory,
and plausibility (Table S3). We applied a standard deviation corresponding to the coefficient of
variation of 0.308 for sampling parameters. This coefficient corresponds to a standard deviation
of 0.20 on the rate of progression in healthy individuals and captures the range of yearly rates
of progression among healthy individuals reported in past literature.52 For combinations of
covariates not previously reported52 (co-occurence of diabetes and hypertension) we used the
higher mean prior values corresponding to either one of the conditions occurring, and applied a
higher coefficient of variation (0.461) to indicate a lower level of confidence in the priors. We
then further adjusted truncated normal priors based on regression analysis in order to achieve
coverage of calibration targets.

We sampled R = 100, 000 parameter sets {θ1, ...θR} from the prior distributions using a
Latin hypercube sampling design.63 To ensure that rates of decline increased with higher
comorbidity burden and decreased with treatment, we used rejection sampling to sub-select
parameter sets that followed that requirement. Cohorts of size N = 10, 000 were sampled,
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Figure 3: Calibration procedure. A. A parameter-set level log likelihood calculated by simulat-
ing disease trajectories for M · N individuals across M sampled cohorts comparing
their summaries to calibration targets using multinomial loss. B. Posterior of decline
parameters calculated by sampling R parameter sets from the prior defined in Table
S3, calculating parameter-set level log likelihoods following simulation, and using the
sample importance resampling (SIR) procedure to weigh the R parameters based on
their log likelihoods to obtain a posterior.
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each composed of 50% men and 50% Black individuals, with M = 100 cohorts. We ran R · M
experiments, generating sets of trajectories for each unique parameter set-cohort combination.
Resulting trajectories were aggregated and compared against AFC calibration targets using a
log-likelihood function comprising a sum of multinomial log-likelihoods, defined in the Model
Supplement.

Model input parameter uncertainty for all outcome measures was accounted for by randomly
sampling from the joint posterior distribution obtained from Bayesian calibration using the
sample importance resampling algorithm.64,65 The posterior distribution was represented by
a subset of sampled parameter sets with importance weights. We used 1000 parameter sets
sampled from the posterior distribution to generate all primary outcomes for all scenarios and
policies with 95% posterior model-prediction intervals for each outcome from the 2.5th and
97.5th percentiles of the projected values. Once the posterior distribution was identified, we
recalculated eGFR trajectories for all M cohorts in the counterfactual scenario corresponding
to the posterior, and compared them with regards to life expectancy, distribution of CKD
stages across ages, and eGFR value at intervention, stratified by sex, race, ICE, and SDI.

3 Results

3.1 Data summaries

We extracted a cohort of 733,337 individuals from the AFC dataset, described in Table 1. A
cohort extraction flowchart also appears in the Figures and Tables Supplement. The cohort has
a mean age of 60 and is 44% male. At inclusion, 8% of individuals had a CKD diagnosis code.
This is lower than the national age-adjusted prevalence of 21%, but consistent with a high
degree of underdiagnosis of CKD.9 Additionally, 25% of individuals had a diabetes diagnosis
and 60% had a hypertension diagnosis, similar to national prevalence values. Our cohort had
88% of individuals with an eGFR value at or above 60, corresponding to no CKD or stages 1
and 2.56,57 Only 6% of our cohort was Black or African American with 79% white individuals.
Of note, 12% of the cohort were missing race, 27% were missing ethnicity information, and
15% had missing census tract information. For the social indices, ICE and SDI, we observed
a health gradient, where indices indicating higher levels of deprivation were associated with
higher prevalence of diabetes, hypertension, and CKD. For instance, prevalence of diabetes
ranged from 19% to 31% in the least and most deprived ICE quantile, respectively.

Table 1: American Family Cohort data summary

Count (%)

Demographics
Cohort size 733,337
Male 325,346 (44%)
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Table 1: American Family Cohort data summary

Count (%)

Race
White 577,720 (78%)
Black or African American 46,770 (6%)
Asian 15,388 (2%)
American Indian or Alaska Native 2,091 (<1%)
Native Hawaiian or Other Pacific Islander 956 (<1%)
Multiple 74 (<1%)
Unknown 87,198 (11%)
Additional group 3,140 (<1%)
Ethnicity
Not Hispanic or Latino 478,618 (65%)
Hispanic or Latino 55,019 (7%)
Unknown 199,700 (27%)
Diagnoses
Diabetes 181,264 (24%)
Hypertension 440,588 (60%)
Chronic Kidney Disease 60,227 (8%)
Chronic Kidney Disease (CKD) Stage
Stage 1 or no CKD 323,867 (44%)
Stage 2 or no CKD 321,436 (43%)
Stage 3a 61,126 (8%)
Stage 3b 21,398 (2%)
Stage 4 4,481 (<1%)
Stage 5 1,029 (<1%)

3.2 Model calibration

Our calibration procedure generated a single best-fitting parameter set, which we refer to as
the mean posterior. The inclusion of ICE and SDI calibration targets did not impact the
value of the mean posterior. Figure 4 shows the value of the mean posterior compared to
the mean prior slope parameters, as well as the distribution of sampled parameters. Mean
baseline rate of decline among healthy individuals was 0.68 mL/min/1.73m2, 5% higher than
that in the prior, and increased by 13% after reaching CKD stage 3a (compared to no change
in the prior). Decline prior to CKD stage 3a was elevated 1% by comorbid diabetes, 15% by
hypertension, and 159% by a combination of both (compared to 69%, 11% and 69% increase in
the prior). Decline after reaching CKD stage 3a was elevated 152% by comorbid diabetes, 24%
by hypertension, and 163% by a combination of both (compared to 331%, 115%, and 331%
increase in the prior).
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Figure 4: The distribution of sampled parameters (blue), with mean prior52 (in black) and
posterior (in red) values marked. Outlier values are not shown. Healthy corresponds
to individuals in chronic kidney disease (CKD) stages 1 and 2 or without CKD, who
also do not have diabetes or hypertension.
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We examined the distribution of individuals across CKD stages and ages stratified by sex
(Figure S4), diabetes (Figure S5), and hypertension (Figure S6) for both simulation scenarios,
comparing the prevalence observed in our AFC cohort corresponding to calibration targets.
Both simulation scenarios generated highly similar, overlapping results. Prevalence was closely
matched to that in the AFC cohort in CKD stages 1 and 2 for the sex strata, as well as for
individuals with diabetes or hypertension, and less closely matched for those without diabetes
or hypertension. Results were more imprecise at later ages and later stages, where group sizes
were small. In particular, lower prevalence at later ages in stages 3a and 3b and higher in
stages 4 and 5 in our simulations.

3.3 Simulation results

We compared life expectancy under our two simulated scenarios, separately considering groups
stratified by sex, race and CKD status, and included the results in Figure S2 and Figure
S3. Confidence intervals for all strata were wide and overlapped 0. For example, 50 year old
simulated men would on average live 5 (95% CI [284, -274]) days shorter if they were Black,
and 25 (95% CI [335, -284]) days shorter if they were non-Black.

In our main results, we compared the earliest times at which simulated individuals would qualify
for a diagnosis at each CKD stage for the two scenarios (Figure 5). Under the counterfactual
scenario with eGFR21, Black individuals would qualify for diagnosis earlier, and non-Black
individuals later, compared to the reference eGFR09 scenario. The difference was largest for
earlier stages and smaller at each consecutive CKD stage. For example, under the counterfactual,
the earliest diagnosis into stage 2 would on average be 10.5 and 9.9 years earlier for Black
women and Black men, but 4.8 and 5.3 years later for non-Black women and non-Black men.
However, the earliest diagnosis into stage 5 would, on average, be 0.8 and 0.7 years earlier for
Black women and Black men, but 1.1 and 1.0 years later for non-Black women and non-Black
men. We also compared the difference in eGFR values that would qualify individuals into
particular stages under the two scenarios. Under the counterfactual scenario, Black individuals
would qualify for diagnosis at higher values of eGFR with non-Black individuals at lower values
than under the reference. Similar to the difference of diagnosis times, the differences in eGFR
values between the two scenarios decreased at each consecutive stage.

4 Discussion

We developed a framework for mitigating societal bias in data, creating new values under a pre-
specified data generating process in a first-of-its-kind microsimulation-based data transformation
method. This involved generating a microsimulation model of CKD progression based on eGFR
decline over time, calibrated to a cohort of primary care patients in the AFC dataset. Our
model was able to reproduce stage distributions observed in the cohort, which reflected patterns
of CKD progression and care informed by the 2009 CKD-EPI equation.
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Figure 5: Difference in time (years) and eGFR (mL/min/1.73m2) value at the earliest possible
diagnosis to a given chronic kidney disease (CKD) stage under eGFR21−eGFR09.
Negative values indicate earlier diagnosis (left) or lower value of eGFR during diagnosis
(right) under eGFR21 compared to eGFR09. Outliers not shown.

The model allows for generating counterfactual eGFR trajectories that reflect the use of the 2021
CKD-EPI equation through adjusting the timing of interventions based on the counterfactual
eGFR levels. The trajectories simulated under the counterfactual scenario reflected earlier
diagnoses for Black patients and later diagnoses for non-Black patients than observed in data.
However, these differences did not lead to appreciable differences in life expectancy. The
small magnitude of observed changes could be a result of high rates of underdiagnosis and
undertreatment reported in past literature and reflected in our model. These observed results
are also consistent with a recent study at Stanford Health Care that demonstrated that the
adoption of the new eGFR equation without race adjustment did not impact rates of nephrology
referrals and visits after two years66.

Rates of progression identified through the Bayesian calibration procedure differed from those
previously derived from NHANES data52,53. In particular, rates of progression following CKD
stage 3a, while higher than those in earlier stages, did not increase as notably in our model
as in NHANES data. This could potentially reflect a higher quality of CKD and comorbidity
management among the AFC population compared to the national sample. The rates did
not differ across area-level social deprivation indices, which might be explained by similarity
between index-specific calibration targets.

The differences in earliest possible diagnosis time in the two simulation scenarios followed the
hypothesized direction from prior literature,36 with Black patients qualifying for diagnosis
earlier and non-Black later than in the reference scenario. However, the real time of diagnosis is
likely to lag behind the time of the earliest possible diagnosis, as it depends on the physician’s
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decision to initiate diagnosis and requires two blood tests separated by at least 90 days to
establish chronicity.11 Of note, the difference is much higher in earlier CKD stages, where
diagnoses are less frequent. In stage 2, where differences were largest, additional urine testing
is needed to establish a diagnosis. The observed effect on the timing of diagnoses may therefore
be smaller than reported, and modified by factors related to the health system and health
access. The results point to potential adverse consequences of the change in the eGFR equation
among non-Black patients, who could be experiencing delayed care, compared to the 2009
criteria.

Our work has several limitations. The AFC dataset included short observation periods for
individuals, high variability in the frequency of creatinine observations, and data coding errors
common in electronic health data. Given the limited data on albuminuria available in the
AFC dataset, we also did not include albuminuria status in our model, as CKD models often
do.48 Additionally, our choice of an eGFR-based CKD progression model, considered better
clinically motivated than discrete stage modeling,49 made it possible for us to identify timing
of eGFR-based interventions and their counterfactuals more directly. However, it prevented us
from using the complete set of intermittently observed data in the AFC dataset from informing
our model, in ways that a stage-based model may have allowed. We assumed a uniform
stage-conditional probability of diagnosis and nephrology treatment although those differ across
states, race and ethnicity, age, socioeconomic status, and insurance status.67,68. Future analyses
could consider differences in rates of diagnosis and nephrology referrals across social deprivation
index quantiles. Further, we assumed that interventions would be triggered immediately after
crossing an eGFR threshold value. In practice, interventions would typically be initiated with
some delay, based on the timing of physician visits, would likely not be effective immediately,
and would be subject to discontinuation by some patients. The set of interventions available
for CKD patients is vast and their matching to patient profiles is complex. Our consideration
of two interventions limited the range of effects observed. Finally, prior literature reports a
wide range of treatment effectiveness values, and our assumption of uniform effectiveness may
have impacted our results.

Our data transformation framework demonstrates how the explicit representation of the data
generation process can help anticipate the effect that policy changes have on clinical data
distributions. By simulating continuous disease trajectories, and explicitly modeling clinical
decisions and their effectiveness, our framework can be used to generate a range of counterfactual
values. This goes beyond reclassification and can include effects of treatment in the short and
long term. An advantage of our framework is that it can be flexibly adapted to mitigate bias
in other health data sources.
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S1: Model Supplement

Sampling time to diabetes and hypertension

We model time to comorbidities (i.e., diabetes and hypertension, separately) using piecewise
exponential frailty models, based on incidence statistics grouped by age.56,57 Let F c

t be the
cumulative distribution function (CDF) of developing a comorbidity C:

F c
t = αcF

c1
t ,

where F c1
t is the CDF of those that eventually develop the comorbidity, and αc is the proportion

of individuals who eventually develop the comorbidity in their lifetime. For each ith simulated
individual, we sample whether they will eventually develop the comorbidity C following a
Bernoulli distribution:

C ∼ Bernoulli(αc).

For those who will eventually develop the comorbidity (C = 1), we sample the age of comorbidity
onset:

T ∼ F c1
t if C = 1, else ∞.
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Time to diabetes is not conditional on any additional covariates. We estimated the CDF of
developing diabetes, F d

t = αdF d1
t , based on CDC yearly incidence statistics (Table S1),56 by

treating yearly incidences as hazards hd
t that apply across age ranges:

Hd
t =

100∑
t=18

hd
t ,

F d
t = 1 − exp(−Hd

t ),
αd = F d

100,

F d1
t = 1

αd
F d

t .

We assumed that αd corresponds to the CDF at age 100. Time to hypertension is conditional
on sex only (Table S1).57 We do not consider the joint probability of developing diabetes and
hypertension, given availability of data sources.

Mortality sampling

Time of death is sampled from a piece-wise exponential survival model obtained from age-
and sex-specific life tables in 201958 using a nonparametric sampling method.60 For each
ith individual, their corresponding mortality hazard function h(t) (indexed by v) is adjusted
to reflect the impact of individual covariates X(t), CKD status and diabetes, at time t on
background hazard function hb(t), assuming proportional hazards. Hazard ratios HR(X(t))
apply to all-cause mortality, irrespective of albuminuria status overall,59 and are used once
one’s eGFR value reaches 60 (Table S2). This results in a unique survival S(t) function for
each individual based on their eGFR trajectory. The survival function is additionally adjusted
to reflect survival until the end of the 29th year of life, S(29). Individual time of death T is
then sampled from the adjusted survival function S∗(t).

h(t) = hb(t) · HR(X(t))

S(t) = exp(−
t∑

v=0
h(v))

S∗(t) = S(t)
S(29)

T ∼ S∗(t) + U [0, 1]
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Simulating counterfactual outcomes

Reference and counterfactual scenarios for an individual differ primarily by the time at which
progression-delaying interventions are applied. Hence, they differ in the portions of trajectories
following interventions. For those receiving interventions at a specific stage, a change in the
speed of eGFR decline is applied when the eGFR value reaches a specific cutoff corresponding
to that stage. That threshold is given by the eGFR09 equation under the reference scenario
and by the eGFR21 equation under the counterfactual scenario. Counterfactual trajectories
additionally differ from reference trajectories by time of death. The mortality hazard function
for the counterfactual is adjusted with hazard ratios corresponding to eGFR values following an
intervention, resulting in a divergence of survival functions. Using common random numbers,
reference and counterfactual death times are sampled jointly from each individual’s survival
functions. For those not assigned interventions, either because they never progressed into a
more advanced CKD stage or because they progressed but were not diagnosed and treated, the
two scenarios result in identical trajectories.

Calibration

Sampling parameters from a prior

We calibrated the model with respect to L = 8 parameters, which describe annual rates of eGFR
decline conditional on 3 binary variables: diabetes, hypertension, and moderate-or-advanced
CKD. The parameter sets come from a vector of truncated univariate normal prior distributions
defined in Section 2.3 and Table S3:

θ ∼ [N (µ1, σ1), ..., N (µ8, σ8)].

We sampled R parameter sets [θ1, . . . θR] from the prior before the start of the experiment and
then saved them.

Calibration targets

Calibration targets correspond to the distribution of individuals across CKD stages, and are
defined in the Parameters Supplement. Each of the S = 5 calibration targets corresponds
to As multinomial distributions. Each multinomial distribution a is defined by Ns,a trials
and K = 6 mutually exclusive events, where Ns,a is the size of the cohort in stratum a for
calibration target s (defined by covariates such as age) and K is the number of stages. For
example, the first calibration target consists of A1 = 14 individual multinomial distributions,
each corresponding to a distribution of individuals within a single age category and a single
sex across six CKD stages. As such, for each calibration target s and stratum a, the number of
individuals in each stage is represented from the data as xs,a, defined as:
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xs,a ∼ Multinom(Ns,a, ps,a),
ps,a = [ps,a,1, ..., ps,a,K ] ∈ [0, 1]K ∧

∑
k

ps,a,k = 1,

xs,a = [xs,a,1, . . . xs,a,K ] ∧
∑

k

xa,k = Ns,a,

f(xs,a) = Ns,a!
xs,a,1! . . . xs,a,K !p

xs,a,1
s,a,1 . . . p

xs,a,K

s,a,K .

In our experiments, xs,a come directly from empirical data, and are defined in Table S5, Table
S6, Table S7, Table S8 and Table S9. Parameters ps,a are generated from the simulation model
as ps,a = qs,a/Qs,a, where qs,a is the simulated number at each stage and 1⊺qs,a = Qs,a.

Running an experiment matrix

We ran R · M experiments generating M · N trajectories for each parameter set θr. Summary
matrices qs,a,k(θr, m) were calculated for each calibration target s by considering the distribution
of stages and comorbidities every 10 years (at ages 35, . . . , 95) corresponding to 10-year age
bins and selected binary categories. We aggregated matrices by taking an average count across
all M cohorts, and calculated summary trials values Qs,a(θr) as well as distribution frequencies
ps,a(θr) as defined below:

Qs,a(θr, m) =
∑

k

qs,a,k(θr, m),

qs,a(θr, m) = [qs,a,1(θ1, m), . . . , qs,a,K(θK , m)],
ps,a(θr, m) = qs,a(m, θr)/Qs,a(m, θr),

ps,a(θr) = EM [ps,a(θr, M)].

Coverage analysis

To assess the coverage of calibration targets by experiment summaries, we calculated 95%
Wald-type confidence intervals on the calibration targets, using the following formula:

ys,a,k ± 1.96
√

ys,a,k(1 − ys,a,k)
Ns,a

,

where ys,a,k = xs,a,k/Ns,a with xs,a,k and Ns,a coming directly from AFC cohort.

We calculated the 95% uncertainty bounds (using the 95% interquantile range) for the simulated
outcomes, using the 2.5th and 97.5th quantile for each pa,k directly from its distribution across
all parameter sets (Pa,k,r).
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Calculating the log-likelihood function

The log-likelihood ls,a(θr|ps,a(θr)) of the parameter set θr generating xs,a(θr) with respect
to the calibration target a and a calibration strata s is defined below. We combined those
log-likelihoods across strata and calibration targets with simple summation to generate l(θr):

ls,a(θr|ps,a(θr)) = log Ns,a!
xs,a,1! . . . xs,a,K ! +

∑
k

xs,a,k log ps,a,k,

l(θr) =
S∑

s=1

A∑
a=1

lr(θr|ps,a(θr)).

The log likelihood can become infinitely negative when any of the pk = 0. We remove those
rows from calibration targets, generating multinomials with fewer categories for some strata.

Calculating the posterior with sample importance resampling

Once we calculated parameter set-level log-likelihoods l(θr), we computed sampling importance
weights wr using a softmax function. We then resampled with replacement Q = 1000 times
from the discrete distribution [θ1, ..., θR] using sample importance resampling weights, obtaining
a matrix θ′ = [θ′

1, . . . θ′
Q]:

wr = exp l(θr)∑R
r=1 exp l(θr)

= softmax(exp l(θr)),

θ′ ∼ (θ1, ..., θR; w1, ..., wR).

Because we assumed that each of the L parameters was an independent, normally distributed
variable, the posterior distribution of decline parameters θ′ can be calculated by separately
computing means and standard deviations for each dimension l across the Q resampled
parameter sets in θ′:

θ′ ∼ [N (µ′
1, σ

′2
1 ), ..., N (µ′

8, σ
′2
8 )],

µ′
l = E[θ′

;l],

σ′
l =

√
E[(θ′

;l − E(θ′
;l))2].
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eGFR equations

The 2021 CKD-EPI Creatinine equation36, with serum creatitine (Scr):

eGFR21 = 142 × min(Scr/κ21, 1)α21 × max(Scr/κ21, 1)−1.200

× 0.9938age × 1.012(female),
where κ21 = 0.7 when female, 0.9 when male,

and α21 = -0.241 when female, -0.302 when male.

The 2009 CKD-EPI Creatinine equation31:

eGFR09 = 141 × min(Scr/κ09, 1)α09 × max(Scr/κ09, 1)−1.209

× 0.993age × 1.018(female) × 1.159(Black)
where κ09 = 0.7 when female, 0.9 when male,

and α09 = -0.329 when female, -0.411 when male.
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S2: Parameters Supplement

The initial distribution of eGFR for individuals was set at N (108.8, 15.5), corresponding to
the distribution in the AFC cohort among individuals aged 25-35. Onset of hypertension and
diabetes was based on annual hazards of incidence, as shown in Table S1.56,57 For hypertension,
we additionally assumed that incidence in ages 18-19 and 80-100 matches that in ages 20-29
and 70-79. Annual hazard rates for background mortality came from sex-specific 2019 life
tables.58 Previously reported hazard ratios59 were used to additionally account for increased
mortality associated with diabetes and eGFR level below 60 (Table S2). The ratios correspond
to mean hazard ratios for all-cause mortality, irrespective of albuminuria status. Mortality
adjustments were not applied above eGFR 60 given the lack of clear explanation for elevated
mortality at higher eGFR levels.

Sex Age Annual rate

Diabetes Any 18-44 0.003
45-64 0.0101
65-100 0.0068

Hypertension Male 18-29 0.0055
30-39 0.0166
40-49 0.0219
50-59 0.0236
60-69 0.028
70-100 0.0311

Female 18-29 0.002
30-39 0.0077
40-49 0.018
50-59 0.0249
60-69 0.0347
70-100 0.0428

Table S1: Annual rates of diabetes and hypertension incidence, based on published values56,57

and additional assumptions.

Parameters for interventions came from a combination of past studies and assumptions. We
assumed primary care management following CKD diagnosis starting in stage 3a. Diagnosis
rates for stages 3a and 3b were from an analysis of records of patients meeting diagnostic
criteria in large electronic health record databases.69 We do not consider differences in diagnosis
rate by sex reported by the study. Diagnosis rates in stages 4 and 5 were from a smaller
analysis70.

Frequencies of nephrology management in stages 3a, 3b and 4 were obtained from a retrospective
multicenter study of stage 3 and 4 patients in Massachussetts.68 These values only consider
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eGFR Diabetes No diabetes

≥ 60 1 1
45-59 1.18 1.19
30-44 1.65 1.53
15-29 2.28 2.27
0-14 4.46 4.06

Table S2: Mortality hazard ratios, based on eGFR and diabetes.59

Comorbidities
Mean annual
eGFR decline

Before CKD stage
3a

No hypertension No diabetes 0.65
Diabetes 1.10

Hypertension No diabetes 0.72
Diabetes 1.10

CKD stage 3a and
later

No hypertension No diabetes 0.65
Diabetes 2.80

Hypertension No diabetes 1.40
Diabetes 2.80

Table S3: Mean prior rates of annual eGFR decline [mL/min/1.73m 2/year] among groups
defined by chronic kidney disease (CKD) stage and presence of comorbidities.52

diagnosed patients from a state with one of the highest rates of pre-ESRD nephrology care in
the US.67 Frequency of management in stage 5 came from national analyses of the US Renal
Data System, and corresponds to the fraction of patients who reported receiving some form of
nephrology care prior to end stage renal disease requiring dialysis.67,71

Precise estimates of the effectiveness of considered interventions were not available in litera-
ture. Average change in the rate of decline among CKD patients receiving primary care was
approximately 77% (from 3.20 to 0.74ml/min/1.73m2/year).72 A small study reported that the
initiation of nephrology care resulted in an average reduction in the rate of decline from -5.4 to
-0.35 ml/min/1.73m2/year, corresponding to a 94% reduction.16 We adjusted these estimates,
assuming a reduction of the speed of eGFR decline of 20% as a result of enhanced primary care
management following CKD diagnosis and of 60% following the initiation of nephrology care.
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Intervention CKD stage
3a 3b 4 5

Diagnosis followed by primary care CKD
management
Frequency 69,70 29% 56% 83% 100%
Reduction in yearly progression 20% 20% 20% 20%
Nephrology referral
Frequency 67,68 4% 16% 46% 67%
Reduction in yearly progression 60% 60% 60% 60%

Table S4: Frequency and effectiveness of interventions by chronic kidney disease (CKD)
stage.16,67–72

Calibration targets are included in Table S5, Table S6, Table S7, Table S8, Table S9. They
correspond to the distribution of individuals across CKD stages, stratified by age groups and
additional covariates.
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Age Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5

Female
30-39 25,178 4,930 148 28 15 15
40-49 38,234 14,241 624 141 50 40
50-59 44,174 38,129 3,091 630 169 88
60-69 38,250 55,072 8,888 2,526 520 139
70-79 15,597 41,234 14,266 4,704 883 154
80-89 841 17,069 8,313 4,485 929 59
90-99 11 2,046 1,627 1,122 277 11
Male
30-39 17,847 4,338 92 36 22 19
40-49 29,611 14,351 551 126 58 46
50-59 40,460 33,280 2,165 445 135 124
60-69 34,230 45,662 6,010 1,475 332 176
70-79 11,737 35,228 9,411 2,919 553 126
80-89 607 11,526 5,270 2,450 461 55
90-99 11 845 616 377 84 11

Table S5: Number of people in the AFC cohort across chronic kidney disease (CKD) stages
within age groups, stratified by binary sex. Cell counts at or below 11 were masked.

S3: Figures and Tables Supplement
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Age Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5

No diabetes
30-39 38,835 8,623 192 40 21 22
40-49 55,763 24,923 850 148 51 29
50-59 63,378 57,342 3,455 508 119 64
60-69 51,185 74,039 8,910 1,735 319 94
70-79 18,935 53,524 14,447 3,709 593 83
80-89 1,051 20,720 9,032 4,071 753 66
90-99 13 2,255 1,694 1,080 242 11
Diabetes
30-39 4,190 645 48 24 16 12
40-49 12,082 3,669 325 119 57 57
50-59 21,256 14,067 1,801 567 185 148
60-69 21,295 26,695 5,988 2,266 533 221
70-79 8,399 22,938 9,230 3,914 843 197
80-89 397 7,875 4,551 2,864 637 48
90-99 11 636 549 419 119 11

Table S6: Number of people in the AFC cohort across chronic kidney disease (CKD) stages
within age groups, stratified by diabetes status. Cell counts at or below 11 were
masked.
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Age Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5

No hypertension
30-39 32,132 6,706 124 16 11 11
40-49 39,967 16,441 423 48 13 11
50-59 37,751 31,784 1,485 152 33 27
60-69 24,968 32,604 2,714 441 88 40
70-79 7,107 17,728 3,298 681 102 22
80-89 311 5,380 1,733 547 100 11
90-99 11 508 280 131 42 11
Hypertension
30-39 10,893 2,562 116 48 31 25
40-49 27,878 12,151 752 219 95 78
50-59 46,883 39,625 3,771 923 271 185
60-69 47,512 68,130 12,184 3,560 764 275
70-79 20,227 58,734 20,379 6,942 1,334 258
80-89 1,137 23,215 11,850 6,388 1,290 103
90-99 16 2,383 1,963 1,368 319 14

Table S7: Number of people in the AFC cohort across chronic kidney disease (CKD) stages
within age groups, stratified by hypertension status. Cell counts at or below 11 were
masked.
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Age Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5

First tertile
30-39 12,927 2,522 83 21 15 21
40-49 20,110 7,329 407 99 40 47
50-59 24,350 18,019 1,684 405 125 117
60-69 20,261 25,896 4,503 1,389 314 156
70-79 7,788 20,230 6,726 2,407 497 135
80-89 460 7,964 3,945 2,134 453 40
90-99 11 793 634 423 109 11
Second tertile
30-39 11,923 2,624 68 18 11 11
40-49 18,795 8,019 344 83 37 16
50-59 23,474 20,344 1,464 294 79 49
60-69 20,994 29,706 4,528 1,232 257 58
70-79 7,830 22,794 7,260 2,369 435 61
80-89 397 8,663 4,172 2,168 434 34
90-99 11 850 653 437 109 11
Third tertile
30-39 12,253 2,782 61 16 11 11
40-49 19,692 9,032 250 35 11 11
50-59 24,272 21,992 1,210 183 48 16
60-69 20,046 29,428 3,425 712 129 53
70-79 7,338 21,455 5,829 1,596 269 43
80-89 345 7,349 3,291 1,575 267 27
90-99 11 747 591 367 76 11

Table S8: Number of people in the AFC cohort across chronic kidney disease (CKD) stages
within age groups, stratified by ICE tertiles (from most to least deprived areas). Cell
counts at or below 11 were masked.
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Age Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5

First tertile
30-39 13,026 2,565 81 23 14 16
40-49 20,069 7,492 392 101 45 44
50-59 23,925 18,337 1,720 393 123 111
60-69 20,458 26,717 4,697 1,436 342 153
70-79 7,892 20,917 7,029 2,468 520 134
80-89 486 8,555 4,228 2,285 482 46
90-99 11 870 702 494 129 11
Second tertile
30-39 12,068 2,685 81 15 13 11
40-49 18,699 8,125 345 74 30 20
50-59 23,673 20,410 1,429 300 74 45
60-69 20,357 29,070 4,177 1,140 226 61
70-79 7,677 22,220 6,916 2,258 403 61
80-89 381 8,321 4,064 2,064 399 27
90-99 11 835 635 408 95 11
Third tertile
30-39 12,009 2,678 50 17 11 11
40-49 19,829 8,763 264 42 12 11
50-59 24,498 21,608 1,209 189 55 26
60-69 20,486 29,243 3,582 757 132 53
70-79 7,387 21,342 5,870 1,646 278 44
80-89 335 7,100 3,116 1,528 273 28
90-99 11 685 541 325 70 11

Table S9: Number of people in the AFC cohort across chronic kidney disease (CKD) stages
within age groups, stratified by ICE tertiles (from most to least deprived areas). Cell
counts at or below 11 were masked.
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Figure S1: Cohort extraction flowchart.
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Figure S2: Mean additional life expectancy (in years) under the counterfactual scenario com-
pared to the reference scenario, for the simulated population.

37



Figure S3: Mean additional life expectancy (in years) under the counterfactual scenario com-
pared to the reference scenario, for individuals in the simulated population who
develop moderate to advanced chronic kidney disease (stage 3a or later).

Figure S4: Stage prevalence across ages stratified by sex under two simulated scenarios (reference
and counterfactual), compared to that observed in the AFC cohort.
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Figure S5: Stage prevalence across ages stratified by diabetes status under two simulated
scenarios (reference and counterfactual), compared to that observed in the AFC
cohort.

Figure S6: Stage prevalence across age stratified by hypertension (HTN) status under two
simulated scenarios (reference and counterfactual), compared to that observed in
the AFC cohort.
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Figure S7: Stage prevalence across age stratified by SDI tertiles under two simulated scenarios
(reference and counterfactual), compared to that observed in the AFC cohort. SDI
tertiles range from most (Q1) to least deprived (Q3).

Figure S8: Stage prevalence across age stratified by ICE tertiles under two simulated scenarios
(reference and counterfactual), compared to that observed in the AFC cohort. ICE
tertiles range from most (Q1) to least deprived (Q3).
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