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Race adjustments in clinical algorithms
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Racial health disparities are pervasive in the US

False beliefs in racial biological differences contribute

Race-based treatment criteria can make disparities worse

Racial health disparities are pervasive in the US

False beliefs in racial biological differences contribute

Race-based treatment criteria can make disparities worse
*e.g. Race adjustments making minority patients appear healthier → less care

Efforts to remove race adjustments in clinical algorithms
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Consequences of removing race adjustments

Patterns of clinical care are likely to change.

Who will be affected and how?

Electronic health record data will reflect outdated patterns of care.

How can we adjust past data to reflect this?

Racial health disparities primarily come from social drivers of health.

How can we use data on social drivers to model disparities?
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Reproducing outcome disparities through data
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Our approach: model the data generating process 
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Chronic kidney disease (CKD)

Pervasive and underdiagnosed

Affects more than 1 in 7 US adults

As many as 9 in 10 do not know they have it

Serious

Strictly progressive

Final stages require dialysis or kidney transplant

Large disparities

Largely due to social factors
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Pervasive and underdiagnosed

Affects more than 1 in 7 US adults

As many as 9 in 10 do not know they have it

Serious

Strictly progressive

Final stages require dialysis or kidney transplant

Large disparities

Largely due to social factors adapted from 
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CKD: removal of race adjustment in 2021

eGFR: estimating % remaining kidney function

Staging

Treatment decisions

Equation change

2009: Black patients appear healthier

2021: removal

Example: 60 year old woman, 1.1mg/dL serum 
creatinine
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creatinine

eGFR: estimating % remaining kidney function

Staging

Treatment decisions

Equation change

2009: Black patients appear healthier

2021: removal of race adjustment

Example: 60 year old woman, 1.1mg/dL serum 
creatinine
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eGFR 
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Our approach: model the data generating process 
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PRIME: the largest primary care registry in the US
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Dataset: 

• 8M patients
• 1300 clinics

Our cohort: 

Adults with at least two blood 
tests since 1/1/2017 and 
recorded demographics.

• 1M patients
• 750 clinics

Source: The American Board of Family Medicine
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Social drivers of health disparities

Adapted from Foryciarz et al 2024 (under review)
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Effect of equation change on CKD progression

eGFR      Stages Intervention Effect

30-60 Comorbidity 
management

Slower 
progression for 
patients with 
comorbidities

<30 Nephrology 
referral

Slower 
progression
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Effect of equation change on CKD progression
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Effect of equation change on mortality

Time of intervention
baseline
counterfactual
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Preliminary results
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Calibration results: CKD stage prevalence across ages
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Considering counterfactual interventions

eGFR<30 Nephrology 
referral

Slower 
progression

45-55% of 
patients

Preliminary results: survival rates remain virtually unchanged (as suggested by 
prior work*)

Next steps: considering earlier interventions

*Cusick, Marika M., et al. "Algorithmic Changes Are Not Enough: Evaluating the 
Removal of Race Adjustment from the eGFR Equation." arXiv preprint arXiv:2404.12812 
(2024).
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Integrating social 
drivers into the model

Continuing calibration

Stratified evaluation
Sensitivity analysis around 
the timing and impact of 

interventions

Next steps
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Intervening on data through simulations can help address data bias

Data science can benefit from decision science methods 

Removing race adjustments, while important, is not sufficient for 
addressing health disparities

Takeaways

Agata Foryciarz

Contact: agataf@stanford.edu


